

Out going Flux : 200 = F(w) 201

Physically Based Shading D(w) dw dA = ((w), dw cos (w), w) dA(w) Shading D(w) dw dA = ((w), dw cos (w), w) dA(w) Shading D(w) dw dA = ((w), dw cos (w), w) dA(w) Shading D(w), dw dA = ((w), dw), dA

to go from integrating over Erik Sintorn, 2016 $\partial \overline{\Psi}_{h}(\omega i \partial \theta \delta) = \lambda i (\omega i) \partial \omega \cos(\omega i, \omega h) D(\omega h) \partial \omega i$ diff sol angle to area, we must

only express dus in terms of dA

What is Physically Based Shading?

- Somewhere around 2010, all Movie and Video Game studios started turning towards Physically Based Shading.
- Previously, programmers and artists did "whatever looked good" DA(ww) = DI

to go from integrating over diff sol. angle 20 area, we must only express dus in terms of dA

 $\partial \Phi_h(\omega i \partial \theta \delta) = \lambda_i(\omega i) \partial \omega \cos(\omega i, \omega h) D(\omega h) \partial \omega$

Out going flux: 200 = F(wa) 20m

Photorealistic graphics are a reasonable goal these days

incident

Battlefield 1 (2016)

Battlefield 1942 (2002)

Getting the maths right from the start saves a lot of work down the line. ((()) down and (()) of the work

Getting the maths right from the start saves a lot of work down the line.

Getting the maths right from the start saves a lot of work down the line.

Okay, so how do we do it *correctly* then?

0 0

to go from integrating $L_{owe}^{over} = F(\omega_i)L_i$ dif sol. angle to area to we

only express dus in terms or

Optically smooth materials - (((()))) - ((())) The differential area dA(wz) of the microfacets

≥oA= Jur2

n

that have normal wh is:

JA(wh) = D(wh) Jwh JA

 $\partial \Phi_h(\omega i \partial \phi b) = \lambda_i(\omega i) \partial \omega \cos(\omega i, \omega h) D(\omega h) \partial \omega f$

Lgoing Flux: 200 = F(wo) 20m

Okay, so how do we do it *correctly* then?

Microfacet Theory (Torrance and Sparrow, 1967):

≥oA= Jur2

The Microfacet Distribution Function, $D(\omega_h)$, tells us the density of facets with normal = ω_h^{om} integrating over $density = \omega_h^{om}$ integrating over

2016-12-01

only express dw in terms of

cos (win 1 ww) D(ww) dw1

Microfacet Theory (Torrance and Sparrow, 1967): $-L_{i}(\omega_{i})\partial\omega\partialA^{L} = L_{i}(\omega_{i})\partial\omega\cos(\omega_{i},\omega_{h})$

2016-12-01

The Microfacet

Distribution Function,

density of facets with

normal = Whom integrating

dif sol angle to area, we must

only express dus in terms of dA

 $D(\omega_h)$, tells us the

≥oA= Jwr2

O. Foran

Out going flux

 $cos(\omega i)\omega h) D(\omega h) \partial \omega h$

area dA(wh) of the microfacets

Microfacet BRDF: Li(wi) dw dh

Microfacet distribution function

 $(D(\omega_h)F(\omega_i))$ inbegrating diff sol. angle 20 area, we must n. Www. Only express dw in terms of dA

= Li(wi) dou cos (wi, wh

 $\partial \Phi_h(\omega; \partial \phi_0) = \lambda_i(\omega_i) \partial \omega \cos(\omega_i, \omega_h) D(\omega_h) \partial \omega_1$

Out going flux : 200 = F(Wo) 20m

Fresne

area dA(wh) of the microfacets

Microfacet Theory (Torrance and Sparrow, 1967): $\mathsf{brdf} = \frac{G(\omega_i, \omega_o) D(\omega_h) F(\omega_i)}{|n \cdot \omega_i|} \xrightarrow{\mathsf{vertial}}_{\mathsf{h} = \mathsf{Li}(\omega_i) d\omega dA^{\mathsf{L}} = \mathsf{Li}(\omega_i) d\omega \cos(\omega_i, \omega_h)}{\mathsf{h} = \mathsf{Li}(\omega_i) d\omega dA^{\mathsf{L}} = \mathsf{Li}(\omega_i) d\omega$

The differential area dA(wh) of the microgacets How about, $D(\omega_h) = dot(\mathbf{n}, \mathbf{h})^{shininess}$

>0A= Jwr2

To glo from integrating diff sol. angle 20 Hmmm.... math math math math.... No:

 $\frac{dot((winh)}{n,h}) = \lambda_i(w_i) \partial w \cos(w_i,w_i) D(w_i) \partial w}{dot(n,h)} = \lambda_i(w_i) \partial w \cos(w_i,w_i) D(w_i) \partial w}$ $D(\omega_h) \stackrel{\text{identify}}{=} \frac{shininess + 2}{2\pi}$

only express dut in ter

Microfacet Theory (Torrance and Sparrow, 1967): $\overline{\mathfrak{Z}}_{h} = L_{i}(\omega_{i})\partial\omega\partialA^{\perp} = L_{i}(\omega_{i})\partial\omega\cos(\omega_{i},\omega_{h})\partialA$

 $\mathsf{brdf} = \frac{G(\omega_i, \omega_o) D(\omega_h) F(\omega_i)}{|n \cdot \omega_o| |n \cdot \omega_i|} \overset{\text{mention}}{\to} \underset{n \in \mathcal{U}}{\mathsf{flux}} \overset{\text{meident}}{\to} \overset{n}{\to} \overset{\text{meident}}{\to} \overset{n}{\to} \overset{\text{meident}}{\to} \overset{n}{\to} \overset{n}{\to}$

 $F(\omega_i) \approx R_0 + (1 - R_0) (1 - \omega_i) \partial_{\omega_i} \partial_{\omega_i} \partial_{\omega_i} \partial_{\omega_i} \int_{0}^{0} (\omega_i) d\omega_i \partial_{\omega_i} \partial_{\omega$

Other Staturi

2 rue differential area dA(wr) of the microfacets that have normal wh is:

 $\partial \Phi_{h}(\omega i \partial \theta \delta) = \lambda i (\omega i) \partial \omega \cos(\omega i, \omega h) D(\omega h) \partial \omega i$

Out going flux : 200 = F(w) 201

diff sol angle to area, we must only express dus in terms of JA

Material Model

CHALMERS UNIVERSITY OF TECHNOLOGY

Material Model

CHALMERS UNIVERSITY OF TECHNOLOGY

Material Model

CHALMERS UNIVERSITY OF TECHNOLOGY

